25 research outputs found

    Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates

    Get PDF
    An efficient method of reducing edge reflections of flexural waves in plates or bars based on the 'acoustic black hole effect' has been recently proposed and described theoretically by one of the present authors (V.V.K). The method utilises a gradual change in thickness of a plate or bar, partly covered by thin damping layers, from the value corresponding to the thickness of the basic plate or bar (which is to be damped) to almost zero. The present paper describes the results of the experimental investigation of the damping system consisting of a steel plate of quadratic shape (wedge) covered on one side by a strip of absorbing layer. The results of the measurements of point mobility in such a system show that for a wedge covered by an absorbing layer there is a significant reduction of resonant peaks, in comparison with the uncovered wedge or with the covered plate of constant thickness. Thus, the measurements confirm the existence of the acoustic black hole effect for flexural waves and demonstrate the possibility of its use in practice

    Experimental evidence of the acoustic black hole effect for flexural waves in tapered plates

    Get PDF
    A new efficient method of reducing edge reflections of flexural waves in plates or bars based on the 'acoustic black hole effect' has been recently proposed and described theoretically by one of the present authors [1] (see also [2-4]). The method utilises a gradual change in thickness of a plate or bar, partly covered by thin damping layers, from the value corresponding to the thickness of the basic plate or bar (which is to be damped) to almost zero. The present paper describes the results of the experimental investigation of the damping system consisting of a steel plate (wedge) of quadratic shape covered on one side by a strip of absorbing layer. The results of the measurements of point mobility in such a system show that for the wedge covered by an absorbing layer there is a significant reduction of resonant peaks, in comparison with the uncovered wedge or with the covered plate of constant thickness. Thus, the measurements confirm the existence of the acoustic black hole effect for flexural waves and demonstrate the possibility of its use in practice

    Simplified modelling of vehicle interior noise: comparison of analytical, numerical and experimental approaches

    Get PDF
    The present paper describes the results of the investigation of low and medium frequency vehicle interior noise carried out using simplified structural-acoustic models. Analytical, finite element (FE) and experimental studies are presented and compared. In particular, the analytical approach is based on the formula representing the interior acoustic pressure in terms of structural and acoustic normal modes. This procedure does not take into account the effect of the enclosed air on structural vibrations. The FE analysis considers structural vibration modes, interior acoustic modes, full structural-acoustic interaction and the resulting structure-borne noise. The above-mentioned analytical and numerical results are compared with each other, and both of them are compared with the experimental results obtained for the simplified reduced-scale vehicle model “QUASICAR” developed in Loughborough University. The comparisons demonstrate some specific features of the analytical and numerical approaches and outline the acceptable limits of simplification in modelling vehicle interior noise. Although this study is concerned with structure-borne vehicle interior noise, its results and conclusions could be of interest for a wider range of engineering problems, such as building acoustics and dynamics of thin shell structures

    Real-time energy management for diesel heavy duty hybrid electric vehicles

    Get PDF
    In this paper, a fuzzy-tuned equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for a conceptual diesel engine-equipped heavy duty hybrid electric vehicle (HEV). In the HEV, two electric motors/generators are mounted on the turbocharger shaft and engine shaft, respectively, which can improve fuel efficiency by capturing and storing energy from both regenerative braking and otherwise wasted engine exhaust gas. The heavy duty HEV frequently involved in duty cycles characterized by start-stop events, especially in off-road applications, whose dynamics is analyzed in this paper. The on-line optimization problem is formulated as minimizing a cost function in terms of weighted fuel power and electric power. In the cost function, a cost factor is defined for both improving energy transmission efficiency and maintaining the battery energy balance. To deal with the nonexplicit relationship between HEV fuel economy, battery state of charge (SOC), and control variables, the cost factor is fuzzy tuned using expert knowledge and experience. In relation to the fuel economy, the air-fuel ratio is an important factor. An online search for capable optimal variable geometry turbocharger (VGT) vane opening and exhaust gas recirculation (EGR) valve opening is also necessary. Considering the exhaust emissions regulation in diesel engine control, the boundary values of VGT and EGR actuators are identified by offline design-of-experiment tests. An online rolling method is used to implement the multivariable optimization. The proposed method is validated via simulation under two transient driving cycles, with the fuel economy benefits of 4.43% and 6.44% over the nonhybrid mode, respectively. Compared with the telemetry equivalent consumption minimization strategy, the proposed F-ECMS shows better performance in the sustainability of battery SOC under driving conditions with the rapid dynamics often associated with off-road applications

    Three-input-three-output air path control system of a heavy-duty diesel engine

    Get PDF
    In this paper, the control requirement of the air path system of a Heavy Duty (HD) diesel engine which was equipped with a High Pressure (HP) Exhaust Gas Recirculation (EGR), a Variable-Geometry Turbocharger (VGT), and an Electric Turbocharge Assist (ETA) is discussed. A Three-Input-Three-Output (3130) multivariable control structure is proposed. The engine dynamic model required for controller design was obtained using system identification and the controller was tuned by solving an Hoo optimization problem. The engine experimental test results show that this 3130 closed-loop control system has excellent tracking performance, disturbance rejection performance, and gain scheduling capability. The control system has been demonstrated to work with a practical ETA device to make a substantial improvement to engine transient performance

    Control-oriented dynamics analysis for electrified turbocharged diesel engines

    Get PDF
    Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics. The dynamics analysis and controller are successfully validated through experiments and simulations

    Decoupling control of electrified turbocharged diesel engines

    Get PDF
    Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as a promising solution for its advantages in engine downsizing and exhaust gas energy recovery. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The control of the energy flows in an electrified turbocharged diesel engine (ETDE) is still in its infancy. Developing a promising multi-input multi-output (MIMO) control strategy is essential in exploring the maximum benefits of electrified turbocharger. In this paper, the dynamics in an ETDE, especially the couplings among multiple loops in the air path are analyzed. Based on the analysis, a model-based MIMO decoupling control framework is designed to regulate the air path dynamics. The proposed control strategy can achieve fast and accurate tracking on selected control variables and is successfully validated on a physical model in simulations

    Modelling the exhaust gas recirculation mass flow rate in modern diesel engines

    Get PDF
    The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points. It is also shown that good model accuracy can be achieved when the control variables of other air path devices, e.g. The vane position of a Variable Geometry Turbocharger (VGT) and the torque demand of an Electric Turbo Assist (ETA), are kept constant during the EGR valve sweep test used to tune the model. Two different diesel engines are used in this work to demonstrate the model tuning procedure and the model validation results. Both engines are equipped with a high pressure external EGR system and a VGT. One of the engines has a relatively new air system device - an ETA. The model validation results of both engines show good model accuracy not only at steady state engine operating points but also during engine transients

    Robust control of electrified turbocharged diesel engines

    Get PDF
    Electrified turbocharger is a critical technology for engine downsizing and is a cost-effective solution for exhaust gas energy recovery. In conventional turbocharged diesel engines, the air path holds strong nonlinearity since the actuators are all driven by the exhaust gas. In an electrified turbocharged diesel engine (ETDE), the coupling is more complex, due to the electric machine mounted on the turbine shaft impacts the exhaust manifold dynamics as well. In distributed single-input single-output control methods, the gains tuning is time consuming and the couplings are ignored. To control the performance variables independently, developing a promising multi-input multi-output control method for the ETDE is essential. In this paper, a model-based multi variable robust controller is designed to control the performance variables in a systematic way. Both simulation and experimental results verified the effectiveness of the proposed controller

    Explicit model predictive control on the air path of turbocharged diesel engines

    Get PDF
    The turbocharged diesel engine is a typical multi-input multi-output (MIMO) system with strong couplings, actuator constraints, and fast dynamics. This paper addresses the air path regulation in turbocharged diesel engines using an explicit model predictive control (EMPC) approach, which allows tracking of the time-varying setpoint values generated by the supervisory level controller while satisfying the actuator constraints. The proposed EMPC framework consists of calibration, engine model identification, controller formulation, and state observer design. The proposed EMPC approach has a low computation requirement and is suitable for implementation in the engine control unit (ECU) on board. The experimental results on a turbocharged Cat ® C6.6 diesel engine illustrate that the EMPC controller significantly improves the tracking performance of the exhaust emission variables against the decentralized single-input single-output (SISO) control method
    corecore